Eye Floaters No More
Table of Contents

Introduction

Chapter 1: The Anatomy of a Floater
 So what exactly are floaters?
 Now, where exactly in the eye do floaters exist?

Chapter 2: Important Facts

Chapter 3: Surgical Procedures
 Vitrectomy
 Vitreolysis

Chapter 4: Problems with Surgical Solutions

Chapter 5: Locating a Floater

Chapter 6: Prevention

Chapter 7: Avoiding Physical Damage

Chapter 8: Natural & Herbal Remedies
Introduction
Introduction

Your eyes are perhaps the most precious of all your organs. When we’re very young, our vision of the world defines our understanding of it, and as we grow older, we continue to depend greatly upon these precious organs of sight. Without clear sight - sight that can take in the blue of the sky, the myriad leaves on a tree, our world would be a dull dark place indeed. And while there are many complex organs in our body, nevertheless our organs of sight perform no easy task.

Think about it. The world around us is awash in electromagnetic radiation, and our eyes absorb these radiations and turn them into images that our minds can understand. This is in itself a complex process. The electromagnetic radiations and light enter our eyes and are focused with the help of a lens onto the retina, a surface that contains many light sensitive cells. These cells turn the radiations and light into nerve impulses which are carried along the optic nerve to the brain. Did you know that when the image arrives at the brain, it’s upside down? It’s perfectly true. When our eyes perceive an object, the lens of the eye turns the object upside down, so that an upside down image forms in the retina. But the brain is a highly adaptive
organ, and it turns the image the right side up, thus allowing us to see the world in its correct perspective.

This just gives you an idea of the complexity and adaptability of the brain itself. Did you know that if you have some obstruction within the eye and if that obstruction is perfectly static, you’ll actually not experience any distortion in your vision at all? It’s perfectly true: there are blood vessels within the eye, and though these obstruct the vision, you do not see them. This is because the brain knows that these obstructions are within the eye itself, and it can correct for them.
Chapter 1: The Anatomy of a Floater
Chapter 1: The Anatomy of a Floater

Now, if you’re reading this book, I assume that you have a relatively serious problem with floaters, or else that you have floaters in the eye which are just irritating. In either case I assume that you want to get rid of these floaters. Well, there’s good news for you, and that is that it’s certainly possible to be rid of floaters. However, sometimes floaters signify a serious problem with the eye itself, and you should be aware of this.

Young people are seldom troubled by floaters, but as you get older, this condition of the eye can become quite common. Generally speaking, you should notice your first floater at the age of about twenty five or so, and over time they can become increasingly more common. In most people there is hardly any need to worry about, but sometimes they can be more than a mere irritation. But what exactly are floaters and what causes this condition? And most important of all, what can you do to deal with it? We’ll be discussing these and other similar issues in the course of this work.
So what exactly are floaters?

Well, if you ever lay on your back on the grass, and looked up at the blue sky, and had some strange objects swimming into your vision that are not really there, then what you are looking at are floaters. Floaters can be of any shape or size, and they are usually semitransparent. They seem to float across your vision in the distance, especially when you’re looking at some bright object or bright light, and they are especially visible against the blue of the sky. But though they appear to be in the distance, they aren’t actually there, and actually exist within the matter of your own eye. As a matter of fact,floaters are distortions within the matter of the eye, and as such can take just about any shape or size.

Some floaters can actually appear as solid spots, when others can have a cobwebby translucent look to them. Still others can look like strings. People used to think that floaters were some sort of optical illusion caused by the eye, but actually they truly exist within the matter of the eye.
Now, where exactly in the eye do floaters exist?

Well, floaters are little bits of matter that break off from the wall of the eyeball, and then float about within the eye itself. To more clearly understand what the floaters are, we need to understand a little more about the structure of the eye itself. The eye is roughly spherical in shape, has a lens in front that directs light into the eye, and it has a retina behind it that actually forms the images that your brain perceives. But the space within the eyeball, that is, the space between the eyeball and the retina, is not empty, instead, it is filled with the vitreous humor -- a very clear gel like substance that fills the cavity of the eyeball. The slight pressure of the vitreous humor it what helps the eyeball keep its shape. This can be crucially important, because distortion of the shape of the eyeball can cause many visual problems, like myopia.

What is this gel that fills the eyeball actually made of? Well, most of it is water, and that is up to 99%. The one percent that remains is made of a mixture of hyaluronic acid and elements of collagen. Over time the hyaluronic acid retains more and more water as it forms a fine
imperceptible network within the eyeball. But as a person ages and with the passage of time this network tends to break down. Water molecules are released creating a watery core within the vitreous humor itself. So you see, while the vitreous humor is fairly homogenous when you are young, as you grow older, the gel like substance tends to cling to the sides of the eyeball and the eye tends to have a watery core in the center of it.

This is an inevitable change that comes with age and cannot really be prevented. Now, as the aging process continues further, you will find that little pieces of gel break out from the surrounding vitreous humor and begin to float through this central watery core. And in doing so they float between your lens and your retina within your eyeball. In doing so, they float right into the path of light that is entering your eye, and they actually cause shadows on your retina itself. Now, since your retina is the organelle within your eye that sends messages to your brain that your brain perceives as images, when these floaters cause shadows upon the retina, the retina perceives these shadows as images, and these images are what you see as floaters.
And now you understand why young people, especially children and those in their early teens almost never have floaters within their eyes. It’s because in young people the gel-like substance within the eye is still homogenous. It doesn’t have that watery center in which particles of gel can float around. It’s only with the passage of time and with the advent of the aging process that floaters actually begin to appear. Now, it’s not absolutely true that children cannot experience floaters, because sometimes they do, but these are a very different kind of floaters, and are not actually found within the vitreous humor itself. This is a very rare instance, but in the rare instance that it does occur, these floaters in children form almost completely on top of the retina, and can appear quite large. However, in reality they are microscopically small. They only appear apparently large in size because of their proximity to the image producing cells in the eye itself.

Generally speaking, in older people a small number of floaters is perfectly natural, but in a young person floaters generally reflect a more serious problem in the eye itself.
In a young person floaters might indicate asteroid hyalosis, in which pieces of calcium actually form within the vitreous humor, and which can be a very serious problem indeed. If you see floaters in your eyes you could actually be suffering from asteroid hyalosis.

Another problem that can cause floaters is vitreous syneresis. In vitreous syneresis the vitreous humor itself shrinks and becomes less. Since this liquid fills the interior of the eyeball, this can be a relatively serious problem and one of the symptoms of it is floaters.

A third problem that can be reflected as floaters is blephritis. In blephritis the eyelids itself are inflamed. In this case the floaters are not caused by a problem in the vitreous humor, but in the eyelids themselves. This inflammation needs to be dealt urgently, because avoiding doing so can cause loss of sight in the eye.

As a matter of fact, any problem with floaters in a young person is usually serious and must be dealt with at once. If you’re seeing floaters in your eyes, and you’re less than twenty five or so, you need to consult the doctor at the very earliest, and find out what more
serious problem is causing the floaters so that it can be treated correctly.

In an older person floaters are natural to an extent, of course, but nevertheless, a great many floaters seen all of a sudden can signify very serious problems, and an immediate consultation with a doctor is necessary.
Chapter 2: Important Facts
Chapter 2: Important Facts

Now, let's talk about 'natural' floaters in the eye, that come about as a result of the aging process. These floaters can be very irritating sometimes, especially when your mind happens to focus on them and then you just can't get past the fact that something is floating around in your field of vision. You may try to move it around, you may try to blink your eyes, you may try efforts at muscular control, but most of these things are not advised, because they can actually cause a strain upon the eye. There are ways of dealing with floaters, and we'll be discussing these methods in the course of this book, but generally speaking, you shouldn't try any amateur experiments at muscular control to try to get rid of your floaters, because this can cause a strain to the eye muscle itself. Generally speaking, since floaters are within your eyeball, blinking or rolling the eyes about doesn't usually help that much.

There are a few more interesting things that I need to tell you about floaters, but the most important thing of all that you need to know is that, generally speaking, floaters are not dangerous to your health, and while they may be irritating, they do not generally threaten your
eyesight itself. Now, with that reassuring fact in mind, let's go on to learn a little more about this interesting visual phenomenon.

Here are some interesting facts about floaters. Did you know, for example, that floaters are only irritating because they float around inside the vitreous humor? If they could only stay in one place, they wouldn't be half as irritating, because your brain has an incredible ability to process images. For example, there are great many tiny blood vessels located inside your eye, and much like floaters they cause shadows upon the retina. But you don't have a problem with these blood vessels, because they never move, and since they never move, your brain has adapted to their existence. Your brain realizes that the shadows caused by these blood vessels are irrelevant, and so it simply removes these irrelevant images when it processes the information sent to it by the retina.

So floaters are irritating only because they keep moving about inside your eye, and your brain is therefore unable to adapt to them. If a floater simply didn’t move within the matter of the eye, it would then in
time become completely invisible, as your brain removed and edited the irrelevant shadow of the floater upon the retina.

Generally speaking, once you pass the age of twenty or twenty-five, or more, you will begin to see one or two floaters in the eye, usually when you’re looking at some bright light.

So why are floaters more visible when you look at a bright object, such as the blue sky, for example? Why is it they are not so apparent when you look at objects in everyday life? For example, when you look around your room right now, even if the room is reasonable well lit, you can’t really see any floaters. Well, what happens when you look at a bright light, like the sky, for example, is that your pupils tend to contract to shut out the glare and protect the eye. When your pupils contract, the light entering the eye becomes more focused, and shadows caused by floaters within the eye become that much more defined, and that’s why floaters are so much more visible when you’re looking at a bright light, or a bright object, or a bright sky.
One thing you may notice if you have floaters for some years is that they tend to stay pretty much the same. Once a floater forms, it doesn’t change much in shape or size, and you’ll have floaters that have retained their individual shape for years and who you might even call old friends.

Another funny thing that you may have noticed about floaters is that they tend to move when you try to focus on them. Well, the reason for this is that since floaters are within the eye itself, as you move your eye around trying to focus on them, the matter within the eye moves and the floaters within your eye move with it. So the more you try to focus on a floater the more it’s going to move around. So you see that floaters are rather amazing things. They are what are called entopic phenomena, where the cause of what you see is not outside the eye, but within your eye itself.

But are floaters ever really dangerous? Now, unfortunately the answer is yes. At times floaters can actually be dangerous. For example, it’s possible for a floater to damage the retina itself by exerting a small pull upon it. Under certain circumstances this gradual
pull can actually tear the retina itself. Now, what happens when the retina is torn is that the vitreous humor itself tends to get into the tear, and this exerts a gradual but continuous pressure that slowly widens the tear until the retina completely detaches from the eye itself. This is a rather serious condition and requires surgery.

There is another point where floaters are extremely dangerous. If you suddenly see a great many floaters within your eye, and if these happen to be accompanied by apparent flashes of light, you need to get to a doctor at once. This sort of manifestation of floaters is a symptom of a detached retina. Now, a retina that is completely detached from its foundations is a very serious condition, because the moment the retina’s detached, it loses it’s supply of nutrients and begins to die. If you wish to retain your sight, you need immediate surgery to fix this condition, or else the retina will die and you will irreparably lose sight in that eye. So you see, in some cases floaters can actually be dangerous, and can threaten your very eyesight itself.

If you’d like to know how to deal with this issue, we’ll be discussing this question a little later in this book. However for now you need to
remember that any incidence of a large number of floaters within the eye should be considered dangerous and you should consult a doctor at once. Even more important is if these floaters are accompanied by various flashes of light. They are in reality not flashes of light at all, but merely stimulation to the optic nerve caused by the tearing of the retina. As the retina gradually tears away from its foundation, this is manifested as flashes of light, as this tearing stimulates the optic nerves. If you experience these flashes of light along with a great many floaters within the eye, it is certainly a symptom of a serious condition that requires immediate treatment, I cannot stress this strongly enough. Symptoms of a torn or detached retina need immediate treatment if sight of that eye is to be saved.

However, flashes of light are not always a result of a detached retina, though you should, of course, have your eyes checked by an eye doctor immediately if you experience this symptom. Flashes of light in the eyes are sometimes caused by migraine headaches. Migraine headaches are caused by blood vessels within the brain itself spasming, and this also causes flashes of light, which occur in both eyes simultaneously. So if you see flashes of light simultaneously and
you have migraine headaches, the chances are that you don’t have any problems with your eyes and that the flashes of light that you see are actually caused by your migraine headaches. Nevertheless, I would advise you to visit a doctor if you experience this symptom.

However, if you do not see great many floaters and if you haven’t experience flashes of light, then there’s nothing to worry about, because retinal detachment in many people does not occur until the age of around eighty or so, and even so, even after retinal detachment occurs, there’s just a fifteen percent chance that the retina will actually begin to tear. So, you don’t need to worry too much about it, unless you experience some actual symptoms.
Chapter 3 : Surgical Procedures
Chapter 3: Surgical Procedures

Generally speaking ‘natural’ floaters are not at all harmful and shouldn’t actually interfere with your ability to go about your normal activities. However, if your job involves staring at brightly lit objects and involves a great deal of concentration, you may find that the floaters are a definite distraction. And if this is the case, there are several procedures available to remove floaters. Not only that, but you can prevent floaters from even occurring in the first place by simply taking a few simple precautions and with the help of some special nutritional supplements.

However, for those who most urgently need to be rid of floaters, there are two surgical options available today. One is a rather invasive procedure called a vitrectomy, which involves surgically replacing a part of vitreous humor. It is a highly risky procedure with the risk of infections and other complications to the eye being nearly fifty percent or more.
Vitrectomy:

In simple terms, a vitrectomy consists of replacing the vitreous humor within the eye with a simple saline solution. Since the saline solution does not have the complex constituents of the vitreous humor, it does not break down with time, and all the problems with floaters are not only cured, but avoided in future. However, this is an invasive procedure, and I wouldn’t really recommend it, unless your problem with floaters is serious. If you have a great many floaters in your eyes, and they actually interfere with your ability to work, or your ability to function in a normal environment, if they truly are obstructing or if they actually interfere with your vision, then yes, this operation is called for.

Let me explain what the actual procedure for a vitrectomy is, so you’ll understand just how serious this treatment is and the fact that it is invasive and only called for in extreme circumstances. A hollow needle is inserted into the eye and a portion of the vitreous humor is removed from the eye. The doctor will attempt to remove that portion of the vitreous humor that actually contains the floaters. In any case, most of the floaters will leave along with the portion of the vitreous
humor removed, because the doctor tends to remove the watery core of the vitreous humor that forms as I explained earlier. This will leave an empty space in the eye, and this empty space is replaced with a sterile saline solution. As you can see, this is a very invasive procedure, and even with the best of precautions there is a risk of infection of the eye and consequent loss of sight. Now, this doesn’t happen very often, but the risk exists and you should know about it. Consider all the other options before opting for a vitrectomy. However, in most cases a vitrectomy certainly results in the complete elimination of floaters.

Generally speaking, I would not advise a surgical option, unless there really is nothing else you can do to reduce your problem with floaters. A vitrectomy is especially hazardous, because not only is there a risk of infection, but also a risk of developing cataracts, as well as the possibility that the retina itself might become detached. All these complications could lead to complete blindness in the affected eye.

Sometimes it might be worthwhile to put up with a relatively mild floater problem than to risk these very much more major
complications. These are very real dangers, and should not be ignored. I would say that surgery is not advised unless it is the only option left. However, to some people floaters can actually be a serious problem and one that warrants a laser treatment or surgery. For example, a musical composer who finds that a floater gets in the way of his reading a sheet of music can find that the floaters in his eye actually affect his quality of life. In such cases a surgical treatment might indeed be called for.
Vitreolysis:

A perhaps more viable and safer option is a laser treatment for floaters, called a vitreolysis, which uses a surgical laser or, as it’s also called, an ophthalmic laser to remove floaters within the eye. Now, the way the laser treatment works is that the floaters are targeted by a surgical laser, and around a hundred tiny bursts are fired into each floater. These bursts actually tend to obliterate the floater completely rather than break into many smaller floaters. This procedure has a high rate of success, with few if any complications. There is also a minimal chance of infection. Your vision might be a little blurry for a few days, and in a small amount of cases there is a slight increase of pressure in the eye, but other than that this is perhaps one of the most successful procedures for dealing with floaters.

Also, you need to be aware that sometimes a laser procedure can actually increase the amount of floaters in the eye rather than decreasing them, though this is actually not very common. There are also sometimes simpler methods of reducing the amount of floaters in your eye, such as getting the eyes flushed with sterile water, for example.
Chapter 4 : Problems with Surgical Solutions
Chapter 4: Problems with Surgical Solutions

So are floaters treatable at all? Well, that depends to a great extent upon your age. Strangely enough, floaters are much easier to treat in older people than in young people, because in an older person floaters are a part of a natural aging process. Yes, they are caused by a breakdown of collagen, which is a very small percentage of the vitreous humor. It is just the same effect that you experience with wrinkles, for example, when the skin loses its elasticity and begins to sag. This is exactly the same process that causes the floaters to begin to appear in the eye. However, in young people it’s a different matter altogether. In this case floaters are not a part of the natural aging process, and they can cause lots of problems, and worst of all, they are not very easy to treat. In older people floaters tend to generally form in the middle of the vitreous humor, that is to say, they tend to form floating in the middle of the eyeball. Thus, in this position that are very easy to target with a surgical laser, and there is very much less chance of damage to the eyeball or any complications that might be caused by this damage.
However, in a younger person floaters tend to form not in the center of the eyeball, but close to the retina, that section of the eyeball at the back of the eye that contains the image producing cells and photoreceptors. Now, when the floater is this close to the retina, it cannot be targeted with a surgical laser without risk of damage of the retina itself. So you see why it is hard to treat young people.

Let me tell you about a case in point which will illustrate just what I’m trying to describe here. Generally speaking, when an eye doctor examines a young person who has come to him or her for treatment for floaters, what the doctor sees is extremely healthy eyes and a vitreous humor that is relatively clear. As a matter of fact, there will be hardly any obstruction in the vitreous humor at all. Instead what we see in young people is that floaters, when they occur, are not only close to retina, but also extremely small in size, in many cases being even microscopic and very dense. They are very difficult for an eye doctor to even locate. Indeed, in some cases they cannot be seen even with the best equipment and magnifying systems. Worst of all, besides being so small and impossible to locate, they are generally
located about half a millimeter to three millimeters from the retina itself.

Now, of course most patients who come in for treatment for floaters, are more than forty years old. But the sad thing that of the smaller section of patients who are young people, only about twenty percent of the cases are even treatable. Let me tell you a case in point which will illustrate just what sorts of problems young people with floaters can face. John was suffering from a hazy spot with a sort of string attached within his eye. This hazy spot remained relatively fixed in his field of vision, and only moved slightly, but it was so central to the eye that it was almost impossible for him to do any kind of work that required concentration.

He visited a doctor, and that doctor diagnosed him as having a partially detached retina, which was of course not really the case at all, whereas the second doctor found it almost impossible to even locate any indications of a problem, other than John’s own description. Now, when he visited a third doctor with more experience, this doctor, using very much more sophisticated
equipment than was available to the other two, found an extremely tiny and very dense particle hovering just half a millimeter in front of the retina. The particle itself was very dense, and there was a stringy thread of matter actually anchoring it in place. Since it was so close to retina, the shadow cast by it caused a massive blockage in vision, and this was exactly what John was complaining about.

Of course, John saw the floater in far greater detail than his eye doctor was able to see it. This is because even with the best equipment a person’s eye always sees the obstructions in far greater detail than is possible even with best magnifying equipment available to doctors today.

However, was John able to have his floater treated? The answer is no, because the floater was located so close to the retina. As I said, it was just about half a millimeter away from the retina, and thus was too close to the retina to risk using a laser or any other kind of treatment. John had to simply live with this floater, because the conventional treatments that are available were unsuited to his condition and extremely dangerous to use. No doctor today would
actually use a surgical laser in such a case, but if one did, the chances are that John would lose vision in that eye due to damage to the retina itself.

You see what I mean when I say that it’s very common for young people who go in for treatment for floaters to be told by the doctors that treatment is actually impossible. Most people who have floaters have far fewer problems with them, but when a young person has a serious problem with floaters and is told by his doctor that absolutely nothing can be done, it can be very frustrating.

So what exactly are the safety problems that can prevent floaters from being treated, especially in the case of young people? The laser that is used in these surgeries is called a YAG laser. This laser has been adapted from a conventional laser that is often used in eye surgeries. The focus of the laser has been slightly altered, so that it directs the energy into the vitreous humor instead of to the lens of the eye, which is where it is usually employed. This laser is conventionally used to treat complications and issues connected with cataract surgeries.
So how safe is this laser? Well, it is reasonably safe if it's employed near the front of the eye or towards the center of the eye, but it's rather dangerous to use at any further depth, and especially close to the retina, because it is an adaptation of a laser created for another purpose, and this adaptation has its limits. If the laser is employed close to the retina, there is an extreme risk of damage to the retina, and serious complications arising thereof that might lead to partial or total loss of sight within that eye.
Chapter 5 : Locating a Floater
Chapter 5: Locating a Floater

Even though floaters are difficult to detect by instrumentation, did you know that doctors can locate a floater simply by your description of it? Generally speaking, the shape and definition of a floater is set by its position within the eyeball. If your floater is hazy or fuzzy, or not very well defined, then the chances are it is more near the lens or in the center of your eye, because these kinds of floaters tend to be more diffuse. This is because as the light flows past the floater, it leaves a shadow upon the retina, and this shadow is actually what you’re seeing. You’re not actually seeing the floater itself - the eyeball on the inside is too dark for you to see the floater. However, you can see its shadow or its eclipse, and that is what defines a floater.

So, when a floater is in the middle of your eye, you tend to see a diffuse sort of shadow, because the light has time to diffuse. On the other hand, if you see floaters that have their edges extremely well defined and with their shapes absolutely clear, the chances are these floaters are just off the retina, because in this case the light has no time to diffuse before touching the retina. Thus, simply by asking a patient what sort of image they see, a doctor can diagnose whether a
patient is suffering from floaters that are near the lens or in the middle of the eye, or near the retina.

As a matter of fact, it is absolutely impossible for a floater that is more towards the middle of the eye or near the lens to cause a shadow with clear edges. These floaters are always diffuse, whereas it is impossible for any object near the retina to cause a diffuse shadow. The shadows of these floaters are always clear and well defined.

This is a medical fact that has been proved by a clinical study involving people from both groups: those who had floaters in the middle of the eye and those who had floaters near the retina, and each group was asked about what sort of floaters they saw, and also asked to draw the kind of images they saw. And the images that each group drew only went to prove these findings.

You might think that being able to diagnose floaters in this way would make the job of finding them easier for a doctor, but actually it is not so. Searching for a floater inside the eye is a lot like trying to find a string of fiberglass floating in a deep lake at night, using only a
flashlight. As you can imagine, it's virtually impossible to find the tiny floaters experienced by young people in this way. Sometimes a doctor will flash a light inside the eye to see a reflection, but even being able to see this is very uncommon.

Mostly in young people what a doctor sees is the clear water-like liquid of the vitreous humor. Even in cases where the floater is found, treatment may not be feasible. Sometimes a doctor will spend a considerable amount of time setting up a retro illumination and considerable magnification, and even so might take fifteen minutes or even longer to find a floater, and after all this, if the floater is sitting right next to the retina, it may indeed not be treatable.

So, if floaters are so difficult to see, how come you can see them, and your doctor cannot? Well, to understand this you have to understand the procedure of sight. This floater is sitting right next to your retina, a bank of biological imaging cells whose resolution is so intense that at that distance, which I told you was less than three millimeters from the retina, they can see the shadow of a red blood cell, if necessary. There is hardly any material between the object and the retina, only
the crystal clear liquid of the vitreous humor. Under such conditions, the environment for imaging this object may be said to be optimal.

On the other hand, your doctor is trying to reflect light off this perhaps microscopic object and see that reflected light through layer upon layer of intense magnification, and then that magnified image is passing through not only your lens, but also through the doctor's lens, as well as through his humor and then to his retina. There are even some mirrors involved in the doctor's imaging equipment. When the light passes through all these objects, its quality is severely degraded - and remember that the source was only a reflection to begin with. This is a great deal more difficult for the doctor's retina to image than the clear shadow caused by an object that is present within your own eye. This is why whereas an object might be absolutely clear to a patient, it is sometimes, or more often, in the case of young people, absolutely invisible to a person's doctor.

Of course, if a doctor were to go over every square millimeter of the eye in great detail, he would most probably be able to find the floater, but neither you nor your doctor have the kind of time that might be
necessary to do something of the sort. It might take days or even longer to find a floater that is microscopic in size against the background of the retina.

So it is very common for even experienced eye doctors to misdiagnose floaters. For example, in a recent case a patient was told by several doctors that his floaters were in the middle of his eye, and that they would be easily removed by surgical intervention. However, when he was examined by a specialist in laser surgery, the specialist found that besides the floaters in the center of the eye the patient had a small concentration of highly dense floaters just above his retina. And it was this specialist’s opinion that it was these floaters near the retina that were the real cause of this patient's problem. And it was this specialist’s opinion that these floaters the patient was suffering from should not be treated. This can give you some idea of the difficulty in correctly diagnosing floaters, and the serious misdiagnoses that can occur. No matter what you might have heard about the effectiveness of surgery, the simple fact is that at least if you’re a young person, surgery does not have all the answers and we would do well to look elsewhere.
Now, I’ve tried to give you some rough idea that would help you to self diagnose whether your floaters are in front of the eye, or in the middle, or towards the retina, but ultimately you doctor will have to examine you in person to make sure of this in full. The point I’m trying to make here is not to keep your expectations too high if you’re searching for a surgical intervention for your floaters.
End of Free Chapters

click "Download Now" button below to

Get **Eye Floaters No More**
Complete Version + Bonuses

![Download Button](image-url)